Search results for "Intranuclear Space"

showing 3 items of 3 documents

PML nuclear body-residing proteins sequentially associate with HPV genome after infectious nuclear delivery.

2019

Subnuclear promyelocytic leukemia (PML) nuclear bodies (NBs) are targeted by many DNA viruses after nuclear delivery. PML protein is essential for formation of PML NBs. Sp100 and Small Ubiquitin-Like Modifier (SUMO) are also permanently residing within PML NBs. Often, large DNA viruses disassemble and reorganize PML NBs to counteract their intrinsic antiviral activity and support establishment of infection. However, human papillomavirus (HPV) requires PML protein to retain incoming viral DNA in the nucleus for subsequent efficient transcription. In contrast, Sp100 was identified as a restriction factor for HPV. These findings suggested that PML NBs are important regulators of early stages o…

Viral DiseasesPhysiologyvirusesIntranuclear Inclusion BodiesPromyelocytic Leukemia ProteinVirus ReplicationBiochemistryAutoantigensImmune PhysiologyMedicine and Health SciencesCell Cycle and Cell DivisionNuclear proteinBiology (General)PapillomaviridaeStaining0303 health sciencesViral GenomicsImmune System ProteinsChromosome Biology030302 biochemistry & molecular biologyCell StainingTotal Cell CountingNuclear Proteinsvirus diseasesAntigens NuclearGenomicsCell biologymedicine.anatomical_structureInfectious DiseasesCapsidCell ProcessesViral GenomeCellular Structures and OrganellesIntranuclear SpaceResearch ArticleHuman Papillomavirus InfectionQH301-705.5UrologyImmunologyCell Enumeration TechniquesSUMO-1 ProteinSexually Transmitted DiseasesMitosisMicrobial GenomicsGenome ViralBiologyResearch and Analysis MethodsMicrobiologyVirusAntibodies03 medical and health sciencesPromyelocytic leukemia proteinVirologyNuclear BodiesmedicineGeneticsHumansVesiclesMolecular BiologyMitosisTranscription factor030304 developmental biologyCell NucleusGenitourinary InfectionsTumor Suppressor ProteinsBiology and Life SciencesProteinsCell BiologyRC581-607Cell nucleusViral replicationSpecimen Preparation and Treatmentbiology.proteinParasitologyCapsid ProteinsImmunologic diseases. AllergyTranscription FactorsPLoS Pathogens
researchProduct

Chromatin modifiers and recombination factors promote a telomere fold-back structure, that is lost during replicative senescence.

2020

Telomeres have the ability to adopt a lariat conformation and hence, engage in long and short distance intra-chromosome interactions. Budding yeast telomeres were proposed to fold back into subtelomeric regions, but a robust assay to quantitatively characterize this structure has been lacking. Therefore, it is not well understood how the interactions between telomeres and non-telomeric regions are established and regulated. We employ a telomere chromosome conformation capture (Telo-3C) approach to directly analyze telomere folding and its maintenance in S. cerevisiae. We identify the histone modifiers Sir2, Sin3 and Set2 as critical regulators for telomere folding, which suggests that a dis…

TelomeraseProtein Folding:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::DNA-Binding Proteins::Rad52 DNA Repair and Recombination Protein [Medical Subject Headings]:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Fungal Proteins::Saccharomyces cerevisiae Proteins [Medical Subject Headings]Gene ExpressionYeast and Fungal ModelsArtificial Gene Amplification and ExtensionQH426-470BiochemistryPolymerase Chain ReactionChromosome conformation captureHistonesCromatina0302 clinical medicineSirtuin 2Macromolecular Structure AnalysisSilent Information Regulator Proteins Saccharomyces cerevisiaeCellular Senescence:Organisms::Eukaryota::Fungi::Yeasts::Saccharomyces::Saccharomyces cerevisiae [Medical Subject Headings]0303 health sciencesChromosome BiologyEukaryota:Phenomena and Processes::Genetic Phenomena::Genetic Processes::DNA Replication [Medical Subject Headings]TelomereSubtelomere:Anatomy::Cells::Cellular Structures::Intracellular Space::Cell Nucleus::Cell Nucleus Structures::Intranuclear Space::Chromosomes::Chromosome Structures::Telomere [Medical Subject Headings]Chromatin3. Good healthChromatinCell biologyNucleic acidsTelomeres:Phenomena and Processes::Cell Physiological Phenomena::Cell Physiological Processes::Cell Cycle::Cell Division::Telomere Homeostasis [Medical Subject Headings]Experimental Organism SystemsDaño del ADNEpigeneticsResearch ArticleSenescenceDNA Replication:Chemicals and Drugs::Enzymes and Coenzymes::Enzymes::Hydrolases::Amidohydrolases::Histone Deacetylases [Medical Subject Headings]Chromosome Structure and FunctionProtein StructureSaccharomyces cerevisiae ProteinsSaccharomyces cerevisiaeBiologyResearch and Analysis MethodsHistone DeacetylasesChromosomes03 medical and health sciencesSaccharomycesModel Organisms:Chemicals and Drugs::Enzymes and Coenzymes::Enzymes::Transferases::One-Carbon Group Transferases::Methyltransferases [Medical Subject Headings]:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Intracellular Signaling Peptides and Proteins::Sirtuins::Sirtuin 2 [Medical Subject Headings]:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Fungal Proteins::Saccharomyces cerevisiae Proteins::Silent Information Regulator Proteins Saccharomyces cerevisiae [Medical Subject Headings]DNA-binding proteinsGenetics:Chemicals and Drugs::Enzymes and Coenzymes::Enzymes::Recombinases::Rec A Recombinases::Rad51 Recombinase [Medical Subject Headings]Molecular Biology TechniquesMolecular Biology030304 developmental biologyCromosomasSenescencia celularOrganismsFungiBiology and Life SciencesProteinsTelomere HomeostasisCell BiologyDNAMethyltransferasesG2-M DNA damage checkpointProteína recombinante y reparadora de ADN Rad52YeastTelomereRad52 DNA Repair and Recombination ProteinRepressor ProteinsAnimal Studies:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Transcription Factors::Repressor Proteins [Medical Subject Headings]DNA damageRad51 RecombinaseHomologous recombination030217 neurology & neurosurgeryTelómeroDNA DamagePLoS Genetics
researchProduct

Identification of a Dynein Interacting Domain in the Papillomavirus Minor Capsid Protein L2

2006

ABSTRACT Papillomaviruses enter cells via endocytosis (H. C. Selinka et al., Virology 299:279-287, 2002). After egress from endosomes, the minor capsid protein L2 accompanies the viral DNA to the nucleus and subsequently to the subnuclear promyelocytic leukemia protein bodies (P. M. Day et al., Proc. Natl. Acad. Sci. USA 101:14252-14257, 2004), suggesting that this protein may be involved in the intracytoplasmic transport of the viral genome. We now demonstrate that the L2 protein is able to interact with the microtubule network via the motor protein dynein. L2 protein was found attached to microtubules after uncoating of incoming human papillomavirus pseudovirions. Based on immunofluoresce…

ImmunoprecipitationImmunologyDyneinActive Transport Cell NucleusGenome ViralMicrotubulesMicrobiologyMotor proteinPromyelocytic leukemia proteinMicrotubuleDynein ATPaseVirologyHumansPapillomaviridaebiologyPapillomavirus InfectionsDyneinsOncogene Proteins ViralMolecular biologyEndocytosisVirus-Cell InteractionsMicroscopy FluorescenceCapsidInsect ScienceDNA Viralbiology.proteinDynactinCapsid ProteinsIntranuclear SpaceHeLa CellsProtein BindingJournal of Virology
researchProduct